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Abstract Current plant genome sequencing projects have called for development of novel and powerful high
throughput tools for timely annotating the subcellular location of uncharacterized plant proteins. In view of this, an
ensemble classifier, Plant-PLoc, formed by fusing many basic individual classifiers, has been developed for large-scale
subcellular location prediction for plant proteins. Each of the basic classifiers was engineered by the K-Nearest Neighbor
(KNN) rule. Plant-PLoc discriminates plant proteins among the following 11 subcellular locations: (1) cell wall, (2)
chloroplast, (3) cytoplasm, (4) endoplasmic reticulum, (5) extracell, (6) mitochondrion, (7) nucleus, (8) peroxisome, (9)
plasma membrane, (10) plastid, and (11) vacuole. As a demonstration, predictions were performed on a stringent
benchmark dataset inwhich none of the proteins included has�25% sequence identity to any other in a same subcellular
location to avoid the homology bias. The overall success rate thus obtained was 32–51% higher than the rates obtained
by the previous methods on the same benchmark dataset. The essence of Plant-PLoc in enhancing the prediction
quality and its significance in biological applications are discussed. Plant-PLoc is accessible to public as a freeweb-server
at http://202.120.37.186/bioinf/plant. Furthermore, for public convenience, results predicted by Plant-PLoc have been
provided in a downloadable file at the samewebsite for all plant protein entries in the Swiss-Prot database that do not have
subcellular location annotations, or are annotated as being uncertain. The large-scale results will be updated twice a year
to include new entries of plant proteins and reflect the continuous development of Plant-PLoc. J. Cell. Biochem. 100:
665–678, 2007. � 2006 Wiley-Liss, Inc.
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Knowledge of the subcellular location of a
protein is important because it can provide
useful clues to reveal its function. Even if the
function of a protein is known, it is equally
important to find where and in what kind of
environment the protein performs its function
because one of the fundamental goals in
cell biology and proteomics is to identify
the functions of proteins in the context of

compartments that organize themin the cellular
environment.Although theknowledge of protein
subcellular localization can be acquired by
conducting various experiments, that is both
expensive and time-consuming. Particularly,
recent advances in large-scale genome sequen-
cing have generated a huge number of protein
sequences. For example, theSwiss-Prot [Bairoch
and Apweiler, 2000] database contained only
3,939 protein sequence entries in 1986, but now
the number has rapidly increased to 227,503
according to version 50.2 of the UniProtKB/
Swiss-Prot Release as of June 27, 2006; that is,
the number of protein sequences has increased
by more than 57 times in about two decades.

The explosion of protein sequences has chal-
lenged us to develop an automated method for
fast and reliably annotating the subcellular
location of uncharacterized proteins. The
knowledge thus obtained can help us timely
utilize these newly found protein sequences for
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both basic research and drug discovery (see,
e.g., [Chou, 2004; Lubec et al., 2005]).

Many methods have been developed in this
regard [Nakashima and Nishikawa, 1994;
Cedano etal., 1997;ChouandElrod, 1999;Nakai
and Horton, 1999; Emanuelsson et al., 2000;
Nakai, 2000; Feng, 2001; Chou and Cai, 2002;
Feng, 2002; Pan et al., 2003; Zhou and Doctor,
2003; Garg et al., 2005; Matsuda et al., 2005;
Shen and Chou, 2005a]. However, of these
methods only the one by [Emanuelsson et al.,
1999], called TargetP, was specialized for pre-
dicting the subcellular location of plant proteins.
The predictor has been widely used since its
inception, stimulating the studies of plant
proteins and related areas. However, TargetP
has the following problems that need to be
further developed. (1) The prediction of TargetP
actually only covers three locations if the
uncertain location ‘‘other’’ as defined in TargetP
is not counted. The three subcellular locations
are: chloroplast, mitochondrion, and secretory
pathway. Therefore, if a user wishes to use
TargetP to predict a protein outside these
three sites, such as endoplasmic reticulum, cell
wall, and vacuole (Fig. 1), the predictor will fail
to work, or the result thus obtained will be
meaningless. (2) Protein sequences annotated
as ‘‘POTENTIAL,’’ ‘‘BY SIMILARITY,’’ or
‘‘PROBABLE’’ were also included in deriving
the prediction rule for TargetP, which might

weaken the predictor due to lacking experimen-
tal evidences. (3) The benchmark dataset con-
structed for TargetP contains many homologous
sequences. For example, after removing the 162
proteins labeled as ‘‘other’’ for the uncertain loca-
tion, the benchmark dataset only contains 940–
162¼ 778 plant proteins, of which 141 belongs to
chloroplast, 368 to mitochondrion, and 269 to
secretary pathway. It has been found thrua sequ-
ence identity analysis [Wang and Dunbrack,
2003] that, among the 141 chloroplast proteins,
there are 4 pairs, that is, (Q39734, Q42910),
(P09195, P46275), (P26259, P24847), and
(P15193,P12330), thathavemore than80%sequ-
ence identity (Table I).Among the368mitochond-
rion proteins, 34 pairs have more than 80%
sequence identity; and among the 269 secretary
pathway, 12pairs. If a cutoff is imposed to exclude
those sequenceswhichhave�25%sequence iden-
tity to each other in a same subcellular location,
the remaining protein sequences in the three
locations would be reduced to 89, 182, and 110,
respectively, which are only about 63%, 49%, and
41% of the proteins in the original dataset of
TargetP.

To improve the quality of working dataset and
avoid the redundancy and homology bias, a much
morestringentdataset forplantproteins isneeded.
Also, to make the prediction practically more
useful for plant cell, more subcellular locations
need to be covered. Particularly, the plant genome

Fig. 1. Schematic illustration to show the eleven subcellular locations of plant proteins: (1) cell wall,
(2) chloroplast, (3) cytoplasm, (4) endoplasmic reticulum, (5) extracell, (6) mitochondrion, (7) nucleus,
(8) peroxisome, (9) plasma membrane, (10) plastid, and (11) vacuole. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com.]
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sequencing projects [Jackson et al., 2006;
Jorgensen, 2006] have called for development of
novelandpowerfulhigh throughput tools to timely
annotate the subcellular location of uncharacter-
ized plant proteins. This kind of developmentmay
also stimulate the in-depth investigation of meta-
bolic pathways, whose knowledge is indispensable
for understanding a living system at the level of
molecular networks [Chou et al., 2006].
The present study was initiated in an attempt

to develop a new approach by which the identi-
fication can cover more subcellular locations of
plant proteins and in the mean time bear less
unwanted bias. To realize this, a new dataset
was constructed that covers 11 subcellular loca-
tions, with a stringent criterion that none of
proteins included has�25% sequence identity to
any other in a same subcellular location.
As iswellknown, themorestringent criterion is

imposed to exclude homologous proteins from a
benchmarkdataset, theharder it is to get ahigher
success rate. Also, the more the number of sub-
cellular locations covered, the lower the odds are
in getting a correct prediction. To overcome these
extra difficulties, the technique by hybridizing
and fusing different classifiers was introduced.

MATERIALS

Protein sequences were collected from the
Swiss-Prot database [Bairoch and Apweiler,

2000] version 49.3 at http://www.ebi.ac.uk/
swissprot/ released onMarch21, 2006according
to the annotation information in the CC (com-
ment or notes) and OC (organism classification)
fields. In order to collect as much desired
information as possible, but meanwhile
ensure a high-quality for the working datasets,
the data were screened strictly according to the
following criteria. (1) Only those sequences
annotated with ‘‘viridiplantae’’ in the OC field
were collected because the current study was
focused on plant proteins only. (2) Because a
same subcellular location (SUBCELLULAR
LOCATION) in the CC fieldmight be annotated
with different terms, several key words were
used for a same subcellular location. For
example, in search for cytoplasmic proteins,
the key words ‘‘cytoplasm,’’ and ‘‘cytoplasmic’’
were used; in search for extracell proteins, the
key words ‘‘extracell,’’ ‘‘extracellular,’’ and
‘‘secreted’’ were used; in search for mitochon-
drial proteins, the key words ‘‘mitochondrion,’’
‘‘mitochondria,’’ and ‘‘mitochondrial’’wereused;
‘‘in search for peroxisomal proteins,’’ the key
words ‘‘peroxisome,’’ ‘‘peroxisomal,’’ ‘‘micro-
some,’’ ‘‘glyoxysomal,’’ and ‘‘glycosomal’’ were
used; in search for plasma membrane proteins,
the key words ‘‘plasma membrane’’, ‘‘integral
membrane,’’ ‘‘multi-pass membrane,’’ and
‘‘single-pass membrane’’ were used; in search
for vacuolar proteins, the key words ‘‘vacuole’’

TABLE I. List of Protein Pairs That Have More Than 80% Sequence Identity in the
Benchmark Dataset Constructed for TargetP [Emanuelsson et al., 2000]

Subcellular location Pair with more than 80% sequence identity

Chloroplast (Q39734, Q42910); 82% (P26259, P24847); 81%
(P09195, P46275); 81% (P15193, P12330); 89%

Mitochondrion (P11498, Q05920); 96% (P15150, Q29552); 81%
(P20004, Q99798); 96% (Q61578, P08165); 86%
(P40939, Q64428); 83% (Q60587, P55084); 89%
(P43304, Q64521); 92% (Q60759, Q92947); 85%
(Q08276, Q01899); 84% (Q15118, Q63065); 92%
(P29197, Q05045); 89% (P00506, P00508); 83%
(P29197, Q05046); 91% (P16219, Q07417); 89%
(P29197, Q43298); 86% (P11066, Q00291); 83%
(P38482, P19023); 83% (P17783, Q43744); 82%
(Q37683, Q95046); 86% (Q16836, Q61425); 89%
(Q03265, P19482); 98% (Q14249, O08600); 86%
(Q07536, Q02253); 94% (Q07021, O35796); 82%
(P06576, Q05825); 87% (P51133, P51134); 91%
(P54071, Q04467); 92% (P46656, P08498); 87%
(Q09128, Q07973); 82% (Q39732, Q39733); 92%
(Q09128, Q64441); 94% (Q06056, Q06055); 87%
(P14519, P34897); 95% (Q06056, Q06646); 86%

Secretory pathway (P14133, P24792); 81% (P11955, P23951); 91%
(P11515, P37891); 85% (P06289, P06451); 83%
(P22284, P22285); 91% (P06289, P06452); 84%
(P25778, Q10717); 81% (P09762, P09761); 82%
(P24101, P00433); 87% (Q43194, Q43193); 82%
(P23432, P52398); 84% (P18263, P51317); 83%

Proteins are represented by their accession numbers.
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and ‘‘vacuolar’’ were used; and so forth. (3)
Sequences annotated with ambiguous or uncer-
tain terms, such as ‘‘potential,’’ ‘‘probable,’’
‘‘probably’,’’ ‘‘maybe,’’ or ‘‘by similarity,’’ were
excluded. (4) Sequences annotated by two or
more locations were not included because of
lack of the uniqueness. (5) Sequences annotated
with ‘‘fragment’’ were excluded; also, sequences
with less than 50 amino acid residues were
removed because they might just be fragments.
(6) To avoid any homology bias, a redundancy
cutoff was operated by a culling program
[Wang and Dunbrack, 2003] to winnow those
sequences which have �25% sequence identity
to any other in a same subcellular location.
(7) Those subcellular locations (subsets) which
contain less than ten protein sequences
were left out because of lacking statistical
significance.

After strictly following the above procedures,
we finally obtained 671 protein sequences of
which 12 belonged to cell wall, 204 to chlor-
oplast, 101 to cytoplasm, 18 to endoplasmic
reticulum, 46 to extracell, 96 to mitochondrion,
85 to nucleus, 16 to peroxisome, 40 to plasma
membrane, 29 to plastid, and 24 to vacuole
(Fig. 1). Thus, we have a dataset S0 which is a
union of the following 11 subsets; that is,

S0 ¼ S0
1 [ S0

2 [ S0
3 [ � � �S0

11 ð1Þ

On the basis of dataset S0, two working
datasets, that is, a learning (training) dataset
SLand an independent testing dataset ST, were
constructed. In order to fully use the data in S0

and meanwhile guarantee that SL and ST be
completely independent of each other, the
following condition was imposed:

SL [ ST ¼ S0 and SL \ ST ¼ ; ð2Þ

where [, \, and ; represent the symbols for
‘‘union,’’ ‘‘intersection,’’ and ‘‘empty set’’ in the
set theory, respectively. Protein samples in the
corresponding subsets of SL and ST are ran-
domly assigned according to the following
‘‘bracket percentage distribution’’ criterion:

nL
i ¼

50þ INTfðn0
i � 50Þ � 0:2g; if n0

i � 50
INTfn0

i � 0:8g; if 20 � n0
i < 50

INTfn0
i � 0:9g; if 10 � n0

i < 20

8<
:

ð3aÞ

with

nT
i ¼ n0

i � nL
i ði ¼ 1; 2; . . . ; 11Þ ð3bÞ

where n0
i ; n

L
i ; n

T
i are the numbers of protein

samples in the ith subset of the original dataset
S0, learning dataset SL, and testing dataset ST,
respectively, and INT is the integer-truncating
operator meaning to take the integer part for
the number in the brackets right after it. The
numbers of proteins thus obtained for the 11
subcellular locations in the learning dataset SL

and testing dataset ST are given in Table II.
The accession numbers and sequences for the
corresponding proteins in the learning and
testing datasets are given in the Online Supple-
mentary Materials A and B, respectively.

METHOD

Now the problem we are facing is how to use
some known data to deduce some unknown
information. For the current study, the known
data are the sequences of proteins as well as the
annotations of those proteins whose subcellular
locations are known through experimental
observations and clearly annotated; while the
unknown data, or the desired results, are the
subcellular locations of the remaining proteins.
To deal with this kind of problem, the first
important thing is how to effectively represent
the sample of a protein. The most straightfor-
ward way in this regard is to use the sequential
model, that is, represent a protein sample with
its entire amino acid sequence, and then deduce
the subcellular location of an uncharacterized
protein according to the sequence similarity
principle.However, this kind of straightforward
sequence-based approach (such as BLAST
[Altschul et al., 1997]) will fail to work when
the query protein does not have significant

TABLE II. Number of Plant Proteins in
Each of the 11 Subcellular Locations for

the Learning and Testing Datasets,
Respectively

Subcellular location
Learning
dataset SL

Testing
dataset

ST

(1) Cell wall 10 2
(2) Chloroplast 80 124
(3) Cytoplasm 60 41
(4) Endoplasmic reticulum 16 2
(5) Extracell 36 10
(6) Mitochondrion 59 37
(7) Nucleus 57 28
(8) Peroxisome 14 2
(9) Plasma membrane 32 8
(10) Plastid 23 6
(11) Vacuole 19 5
Total 406 265
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homology to proteins of known localization. For
instance, for a protein of only 50 residues, the
number of different sequence order combina-
tions would be 2050’1.1259� 1065. Actually,
the average protein length is much longer than
50. According to Swiss-Prot data bank [Bairoch
and Apweiler, 2000] the average length per
sequence is getting longer each year: it was 229
in 1986, but it has been increased to 367 based
on the release 49.7 ofMay 16, 2006. The number
of different combinations for a protein with 367
residues will be 20367¼ 10367log20> 10477. For
such an astronomical number, it is impractical
to construct a training data set to statistically
cover all the possible cluster patterns. Further-
more, protein sequence lengths vary widely.
This has posed an additional difficulty for using
the sequential model for protein subcellular
location. To avoid this kind of difficulties caused
by the sequential model, a feasible approach is
to resort to the discrete model. The simplest
discrete model for representing a protein sam-
ple is the amino acid composition (AA), which
waswidelyused bymanyprevious investigators
to predict protein structural class [Klein, 1986;
Klein and Delisi, 1986; Nakashima et al.,
1986; Deleage and Roux, 1987; Metfessel et al.,
1993; Chou and Zhang, 1994; Mao et al., 1994;
Chandonia and Karplus, 1995; Chou, 1995;
Bahar et al., 1997; Chou and Maggiora,
1998; Liu and Chou, 1998; Zhou, 1998; Zhou
and Assa-Munt, 2001; Luo et al., 2002; Cao
et al., 2006; Lee et al., 2006]. The AA discrete
model consists of 20 numbers each representing
the occurrence frequency of one of the 20 native
amino acids in a protein. Its advantage is simple
and easy to be formulated for various existing
algorithms or predictors, such as the least
Euclidean distance algorithm [Nakashima
et al., 1986; Nakashima and Nishikawa, 1994],
ProtLock predictor [Cedano et al., 1997], covar-
iant discriminant algorithm [Chou and Elrod,
1999], neural network algorithm [Cai andZhou,
2000], and support vector machines (SVM)
[Vapnik, 1998].However, theAAdiscretemodel
didnot include any sequence-order information,
and hence the success rates by the predictors
based on it would be limited. To improve the
situation, the pseudo amino acid composition
(PseAA) was introduced [Chou, 2001]. The
PseAA discrete model consists of 20þ L num-
bers,where thefirst 20numbers are the sameas
those in the AA discrete model and the remain-
ing numbers represent L sequence-correlation

factors of different ranks. It is through the latter
that a considerable amount of sequence-order
information is incorporated [Chou, 2001], and
the prediction quality has been remarkably
improved [Feng, 2002; Pan et al., 2003; Shen
and Chou, 2005b; Zhang et al., 2006; Xiao et al.,
2006b]. Subsequently, the functional domain
composition (FunD) was introduced [Chou and
Cai, 2002]. The FunD discrete model was
extremely successful for predicting protein
structural class [Chou and Cai, 2004], implying
that the structural class of a protein is closely
correlated with the components of its FunD. In
other words, the latter reflects the core feature
of a protein in studying the structural classifica-
tion. Actually, the AA, PseAA, and FunD
discrete models are all reflecting some sort of
core feature of a protein although from different
angles or with different focuses. Now, the
problem is how to find the optimal core feature
for the focus of predicting protein subcellular
location?

Here we are to use the gene ontology (GO)
database [Ashburner et al., 2000; Harris et al.,
2004] to formulate the core feature of a protein.
The reason for us to do so was based on such an
assumption that representation of protein sam-
ples in theGOdatabase spacewouldmake them
clustered in a way closely correlated with their
subcellular locations because the GO database
was established based on the following three
species-independentprinciples:molecular func-
tion, biological process, and cellular component
[Camon et al., 2004; Lee et al., 2005]. All these
criteriaarenot only theattributes of genes, gene
products or gene-product groups, but also
closely correlated with the subcellular localiza-
tion. However, how to establish a predictor
based on the GO database to improve the
prediction quality for protein subcellular loca-
tion is by no means a trivial problem. The
reasons are as follows. (1) For those proteins
with ‘‘subcellular location unknown’’ annota-
tion in Swiss-Prot database, most (more than
99%) of their corresponding GO numbers in GO
database are also annotated with ‘‘cellular
component unknown’’ (see, e.g., the proteins
with accession numbers O75920, P07315, and
Q92796 in Table III). (2) Even for some proteins
whose subcellular locations are clearly anno-
tated in Swiss-Prot database, their correspond-
ing GO numbers in GO database are annotated
with ‘‘cellular component unknown.’’ For exam-
ple, for the proteins with accession number
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O75897, P83683, O43303, and P83168 in
Table III, their subcellular locations are anno-
tated with ‘‘cytoplasm,’’ ‘‘extracellular,’’ ‘‘cen-
trosome,’’ and ‘‘extracellular,’’ respectively, in
Swiss-Prot database, but these proteins are
annotated with ‘‘cellular component unknown’’
in the GO database. (3) It was found through a
statistical analysis that, of the 15,348 plant
protein sequence entries in the Swiss-Prot
database (version 50.0, released May 30,
2006), only 6,355 are annotated with experi-
mentally observed subcellular locations, and
4,540 annotated with uncertain locations such
as ‘‘potential,’’ ‘‘maybe,’’ and ‘‘probable.’’ As
mentioned in the Materials section, the uncer-
tain annotations cannot be used as robust data
for establishing a predictor. Actually, the plant
proteinswith uncertain annotations also belong
to our target of prediction. The similar but even
more complicated situation also exists in the
GO database. Because the GO database was
derived from the Swiss-Prot database, the
subcellular component annotations in GO
would unavoidably contain this kind of uncer-
tain information so as to complicate the pro-
blem. Therefore, the subcellular component
annotations in GO database cannot be used as
the robust data for establishing a solid predictor
either. Accordingly, the really useful data in

this regard can only be taken from the 6,355
plant proteins with experimentally observed
subcellular locations as clearly annotated in the
Swiss-Prot database. In other words, to fill the
gap, the number of plant proteins whose sub-
cellular locations need to be predicted is
(15,348�6,355)¼ 8,933, which is more than
58% of all the plant proteins in Swiss-Prot
database.

Accordingly, the information in GO database
that may be useful for formulating the core
feature of proteins is actually ‘‘buried’’ into
many tedious GO numbers, just like it is
‘‘buried’’ into many amino acid components in
the AA discrete model [Cedano et al., 1997], or
pseudo amino acid components in the PseAA
discrete model [Chou, 2001], or functional
domain components in the FunD discretemodel
[Chou and Cai, 2002], or original amino acid
sequences in the sequential model [Altschul
et al., 1997]. To ‘‘dig out’’ the useful information,
let us consider the GO discrete model, as
formulated below.

Mapping UniProtKB/Swiss-Prot protein
entries [Apweiler et al., 2004] to the GO
database, one can get a list of data called
‘‘gene_association.goa_uniprot,’’ where each
UniProtKB/Swiss-Port protein entry corre-
sponds to one or several GO numbers. In this

TABLE III. Examples to Show the Subcellular Location Annotations for Some Proteins in the
Swiss-Prot Database and the Annotations for the Corresponding GO Numbers in the GO

Database

Swiss-Prot database GO database

Accession number Swiss-Prot annotation GO number GO annotation

O75920 No subcellular location annotated GO:0005554 Molecular function unknown
GO:0007399 Nervous system development
GO:0008372 Cellular component unknown

P07315 No subcellular location annotated GO:0000004 Biological process unknown
GO:0005212 Structural constituent of eye lens
GO:0008372 Cellular component unknown

Q92796 No subcellular location annotated GO:0004385 Guanylate kinase activity
GO:0005515 Protein binding
GO:0008285 Negative regulation of cell proliferation
GO:0008372 Cellular component unknown

O75897 Cytoplasm GO:0000004 Biological process unknown
GO:0008146 Sulfotransferase activity
GO:0008372 Cellular component unknown
GO:0016740 Transferase activity

P83683 Extracellular GO:0005184 Neuropeptide hormone activity
GO:0007218 Neuropeptide signaling pathway
GO:0008372 Cellular component unknown

O43303 Centrosome GO:0000004 Biological process unknown
GO:0005554 Molecular function unknown
GO:0008372 Cellular component unknown

P83168 Extracellular GO:0004866 Endopeptidase inhibitor activity
GO:0004867 Serine-type endopeptidase inhibitor activity
GO:0008372 Cellular component unknown
GO:0030162 Regulation of proteolysis
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study, such a data file was directly downloaded
from ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/
UNIPROT/ (released on March 4, 2006). The
relationships between the UniProtKB/Swiss-
Port protein entries and the GO numbers may
be one-to-many, ‘‘reflecting the biological reality
that a particular protein may function in
several processes, contain domains that carry
out diversemolecular functions, andparticipate
in multiple alternative interactions with other
proteins, organelles or locations in the cell’’
[Ashburner et al., 2000], as exemplified in
Table III. On the other hand, because the
current GO database is not complete yet, some
protein entries (such as ‘‘P27057,’’ ‘‘Q8LGI2,’’
and ‘‘P32034’’) have no corresponding GO
numbers, that is, no mapping records at all in
the GO database, and hence are not included in
the data list of gene_association.goa_uniprot.
The GO numbers do not increase successively

and orderly. For easier handling, some
reorganization and compression procedure was
taken to renumber them. For example, after
such a procedure, the original GO numbers
GO:0000001, GO:0000002, GO:0000003, GO:
0000004, GO:0000006, . . ., GO:0051912 would
become GO_compress:0000001, GO_compress:
0000002, GO_compress:0000003, GO_ compress
:0000004, GO_compress:0000005, . . ., and GO_
compress:0009918, respectively. The GO data-
base thus obtained is called GO_compress
database, whose dimensions were reduced from
51,912 in the originalGOdatabase to 9918. Each
of the 9,918 entities in the GO_compress data-
base served as a base to define a protein sample.
Unfortunately, the current GO numbers failed
to give a complete coverage in the sense
that some proteins might not belong to any of
the GO numbers as mentioned above. Although
the problem will gradually become trivial or
eventually be solved with the GO database
developing, to tackle such a problem right now,
a hybridization approach was introduced by
fusing the GO approach and the amphiphilic
pseudoaminoacid composition (PseAA) approach
[Chou, 2005], as described below.

(1) Search a protein sample in the GO_com-
press database, if there is a hit correspond-
ing to the ith GO_compress number, then
the ith component of the protein in the
9918-D (dimensional) GO_compress space
is assigned 1; otherwise, 0. Thus, the
protein can be formulated as:

P ¼ ½g1 g2 . . . gi . . . g9918�
T ð4Þ

where T is the transverse operator, and

gi ¼
1; hit found inGO compress
0; otherwise

�
ð5Þ

(2) If no hit (i.e., no record in the GO_compress
database) is found at all, then the protein
should be defined in the (20þ 2l)-D amphi-
philic PseAA space [Chou, 2005], as given
below

P ¼ ½p1 . . .p20 p20þ1 . . .p20þ2l�T

¼ ½p1 . . .p20 . . .pL�T;
ð6Þ

where p1, . . .p20 are associated with the amino
acid composition reflecting the occurrence fre-
quencies of the 20 native amino acids in the
protein [Nakashima et al., 1986; Chou and
Zhang, 1994], and p20þ1, . . .p20þ2l are the 2l
correlation factors that reflect its sequence-
order pattern thru the amphiphilic feature
[Chou, 2005]. For simplifying the formulation
later on, L¼20þ 2l is used for Equation 6. The
protein representation thus defined is called the
‘‘amphiphilic pseudo amino acid composition’’
or PseAA, which has the same form as the
conventional amino acid composition but con-
tains more components and information. For
reader’s convenience, a brief introduction about
thePseAAand the key equations for deriving its
components are provided in Online Support
Materials C.

Suppose there are N proteins (P1, P2, . . .PN)
which have been classified into M¼ 11 sub-
sets (subcellular locations). Now, for a query
protein P, how can we identify which subset it
belongs to? Below we shall use the K-
Nearest Neighbor (KNN) rule [Cover and
Hart, 1967; Keller et al., 1985; Denoeux, 1995]
to deal with this problem. According to
the KNN rule, the query protein should be
assigned to the subset represented by the
majority of its K nearest neighbors. Owing to
its good performance and simple-to-use
feature, the KNN rule, also named as ‘‘voting
KNN rule’’, is quite popular in pattern recogni-
tion community. There are many different
definitions to measure the ‘‘nearness’’ for the
KNN classifier, such as Euclidean distance,
Hamming distance [Mardia et al., 1979], and
Mahalanobis distance [Mahalanobis, 1936;
Pillai, 1985; Chou, 1995]. Here, we use the
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following equation to measure the nearness
between proteins P and Pi

dðP;PiÞ ¼ 1� P �Pi

jjPjjjjPjj ð7Þ

whereP �Pi is the dot product of the two vectors,
and jjPjj and jjPijj their modulus, respectively.
According to Equation 7, when P:Pi we have
d(P, Pi)¼ 0, indicating the ‘‘distance’’ between
the two proteins is zero and hence they are
regarded as having perfect or 100% similarity.

In using the KNN rule, the predicted result
will depend on the selection of the parameter K,
the number of the nearest neighbors to the
query protein P. If K¼ 1, the protein P will be
predicted belonging to the same subcellular
location of the protein in the training dataset
that has the shortest ‘‘distance’’ to P as defined
by Equation 7. If there are two and more
proteins in the training dataset (P1, P2,. . . ,PN)
that have exactly the same shortest distance to
P, the query protein will be randomly assigned
to one of their subcellular locations although
this kind of tie case rarely happens.WhenK> 1,
the subcellular location of the query protein P
will be determined by the majority of its K
nearest neighbors thru a vote. If there is a tie for
the voting results, the query protein will be
randomly assigned to one of the locations
associated with the tie case. Generally speak-
ing, the greater theK (thenumber of thenearest
neighbors considered), the less likely the tie
case occurs. In the current study, no tie casewas
observed when K� 5.

Because the predicted results by the KNN
algorithm [Cover and Hart, 1967; Keller et al.,
1985; Denoeux, 1995] depend on the selection of
parameter K, hereafter we shall use NN(K) to
represent the symbol of KNN, implying that the
predicted result is the function ofK, the number
of the nearest neighbors concerned for the query
protein P.

During the course of prediction, the following
self-consistency principle should be followed. If
a query protein was defined in the 9918-D
GO_compress space (Eq. 4), then the prediction
should be carried out based on those proteins in
the training dataset that could be defined in the
same 9918-D space. If the query protein in the
9918-D GO_compress space was a naught
vector and hence must be defined instead in
the (20þ 2l)-D orL-DPseAA space (Eq. 6), then
the prediction should be conducted according to

the principle that all the proteins in the training
dataset be defined in the same L-D space as
well. Accordingly, the current hybridization
predictor actually consists of two sub-predic-
tors: (1) the NN(K)-GO predictor that operates
in the 9918-D GO_compress space, and (2) the
NN(K,L)-PseAA predictor that operates in
the L-D amphiphilic PseAA space. The former
is the function of K, while the latter the function
of both K and L. For a given learning dataset,
selection of different K and L would result in
different outcomes. To get the optimal success
rate, one has to test the results by using
different numbers of K and L one by one.
However, it is both time-consuming and tedious
to do so. To solve such a problem, the following
two fusion processes are introduced for the
NN(K) and NN(K, L) classifiers, respectively.

One Dimensional Fusion

It is for generating an ensemble classifier by
fusing many 1-D individual basic NN(K) classi-
fiers eachhaving adifferent specified value ofK,
as formulated by

NNGO ¼ NNð1Þ8NNð2Þ8 . . . 8NNðOÞ ð8Þ

where the symbol 8 denotes the fusing operator,
and NNGO the ensemble classifier formed by
fusing NN(1), NN(2), . . ., and NN(O) according
to theflowchart ofFigure2.HereO¼ 10because
preliminary tests indicated that the success
rate obtained by the NN(K) classifier trained by
the current learning dataset was lower when
K> 10.

Fig. 2. Flowchart to show how the ensemble classifiersNNGO

(Eq. 8) and NNPse (Eq. 13) are formed by fusing O individual
classifiers, where O¼ 10 and 210 for the cases of NNGO and
NNPse, respectively. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]
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The process of how the ensemble classifier
NNGO works is as follows. Suppose the pre-
dicted classification results for the query
protein P by the 10 individual classifiers in
Equation8 areC1,C2,. . .,C10, respectively; that is,

Ci 2 Smði ¼ 1; 2; . . . ; 10; m ¼ 1; 2; . . . ; 11Þ ð9Þ

where 2 is a symbol in the set theory meaning
‘‘member of’’, and S1, S2, S3,. . .,S11 represent the
11 subsetsdefinedby the11 subcellular locations
studied here (Fig. 1), and the voting score for the
proteinPbelonging to themth subset isdefinedby

YGO
m ¼

X10
i¼1

wiDðCi;SmÞ; ðm ¼ 1; 2; . . . ; 11Þ ð10Þ

where wi is the weight and was set at 1 for
simplicity, and thedelta function inEquation10
is given by

DðCi; SmÞ ¼
1; if Ci 2 Sm

0; otherwise

�
ð11Þ

thus the query protein P is predicted belonging
to the subset (subcellular location) with which
its score of Equation 10 is the highest.

Two Dimensional Fusion

It is for generating an ensemble classifier by
fusing many 2-D individual basic NN(K,L)
classifiers each having different specified
values of K and L. Owing to the similar reason
as mentioned above in setting the value of O for
Equation 8, let us consider K¼1, 2,. . .,10, and
L¼ 20, 22,. . ., 60; that is,

fKg ¼ f1; 2; . . . ; 10g;
fLg ¼ f20; 22; . . . ; 58; 60g

ð12Þ

Thus, the ensemble classifier obtained by the
two-dimensional fusion process can be formu-
lated as

NNPse ¼ NNð1; 20Þ8NNð1; 22Þ8 . . .
8NNð10; 58Þ8NNð10; 60Þ

ð13Þ

where the fusion operator 8 has the same
meaning as that of Equation 8, and the fusion
flowchart can also be illustrated by Figure 2 but
with O¼ 10� 21¼ 210, meaning a process by
fusing 210 basic individual classifiers now.
The detailed process of how the ensemble

classifierNNPseworks is as follows. Suppose the
predicted classification results for the query
protein P by the 210 individual classifiers in

Equation 13 are

Ci;2j 2 Sm ði ¼ 1; 2; . . . ; 10; j

¼ 10; 11; . . . ; 30; m ¼ 1; 2; . . . ; 11Þ
ð14Þ

whereS1,S2,. . . ,S11 have the samemeanings as
in Equation 9, that is, represent the 11 subsets
defined by the 11 subcellular locations studied
here (Fig. 1), and the voting score for the protein
P belonging to the mth subset is defined by

YPse
m ¼

X10
i¼1

X30
j¼10

wi;2jDðCi;2j; SmÞ; ðm ¼ 1; 2; . . . ; 11Þ

ð15Þ

where wi,2j is the weight and was set at 1 for
simplicity, the delta function in Equation 15 is
given by

DðCi;2j; SmÞ ¼
1; if Ci;2j 2 Sm

0; otherwise

�
ð16Þ

thus the query protein P is predicted belonging
to the subset (subcellular location) with which
its score of Equation 15 is the highest.

The predictor thus established is named
Plant-PLoc.

RESULTS AND DISCUSSION

For the proteins listed in the Online Supple-
mentary Materials A and B we obtained the
following results according to Steps 1–2 of
Methods: (1) of the 406 proteins in the training
dataset, 402 got hits in the GO_compress
database, and hence were defined in the 9918-
D GO_compress space (Eqs. 4 and 5), and the
remainder defined in the L-D PseAA space
(Eq. 6); (2) of the 265 proteins in the testing
dataset, all got hits and were defined in the
9918-D GO_compress space, and none defined
in the L-D PseAA space. However, this does not
mean that there is no need to include theNNPse

predictor because in the practical application,
cases do exist where the query proteins cannot
be defined in GO system. It can be seen from a
statistical analysis that currently there still are
more than 3% plant proteins that have no any
corresponding GO numbers. Although such a
problem will be eventually solved with the
continuous development of the GO database, it
would be harmless andmake the predictormore
complete to keep the NNPse classifier in the
system since the prediction process is logically
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operated according to the following priority: if a
query protein can be defined in the 9918-D
GO_compress space, then the classifierNNGO is
used to predict its subcellular location; other-
wise, the classifier NNPse is used to predict its
subcellular location.

The prediction quality was examined by two
test methods: the jackknife test and the inde-
pendent dataset test. In the jackknife test, each
protein in the training dataset was singled out
in turn as a ‘‘test protein’’ and all the rule
parameterswere calculated from the remaining
N-1 proteins. In other words, the subcellular
location of each protein was predicted by the
rules derived using all the other proteins except
the one that was being predicted. During the
jackknifing process, both the training and
testing dataset were actually open, and a
protein was in turn moving from one to the
other. In the independent dataset test, the rule
parameters were derived from the proteins only
in the training dataset, and the prediction was
made for proteins in an independent dataset.
Because the selection of independent dataset
often bears some sort of arbitrariness, the
jackknife test is deemed more objective than
the independent dataset test. Actually, jack-
knife tests are thought one of the most rigorous
and objective methods for cross-validation in
statistics (see [Chou and Zhang, 1995] for a
comprehensive review and [Mardia et al., 1979]
for themathematical principles), and have been
increasingly used by investigators [Zhou, 1998;
Feng, 2001; Zhou and Assa-Munt, 2001; Feng,
2002; Luo et al., 2002; Liu et al., 2005; Wang
et al., 2005;Guo et al., 2006; ZhouandCai, 2006;
Xiao et al., 2006a] in examining the power of
various prediction methods. Therefore, the

power of a predictor should be measured by
the success rate of jackknife test. The indepen-
dent dataset test performed here was just for a
demonstration of practical application.

The predicted results obtained by Plant-PLoc
are given in Table IV, where, for facilitating
comparison, the corresponding rates obtained by
various other predictors are also listed. Aswe can
see from Table IV, the overall success rates
obtained by the current Plant-PLoc in both
jackknife cross-validation test and independent
dataset test were 32–51% higher than those by
the other predictors, indicating that Plant-PLoc
is indeed very powerful. Also, it can be seen from
Table IV that the overall success rate by the
current approach for the independent dataset
test is 7% higher than that for the jackknife test.
This isbecause inthebenchmarkdataset the25%
sequence identity cutoff was imposed only for the
proteins in a same subcellular location; no such a
cutoff was imposed for the proteinswith different
subcellular locations in order for reflecting the
reality. The latter will make it even harder to
enhance the jackknife success rate. Similar
phenomenon can also be seen from Table IV for
the results obtained by the SVM approach.

Why the SVM methods and other predictors
reported in the previous studies could yield
much higher success rates than those listed in
Table IV? The reasons are as follows. (1) The
benchmark datasets originally used in those
predictors contained many homologous sequ-
ences in a same subcellular location. Some of the
benchmark datasets used there contained pro-
teins with up to 90% sequence identity. When
predictions were made by them on the current
stringent dataset in which none of protein has
�25% sequence identity to any other in a same

TABLE IV. Overall Success Rates for the 11 Subcellular Locations (Fig. 1) of Plant Proteins
by Different Classifiers and Test Methods

Classifier Input form

Test method

Jackknifea
Independent

datasetb

Least Euclidean distance
[Nakashima and Nishikawa, 1994]

Amino acid composition 141/406¼ 34.7% 82/265¼30.9%

ProtLock [Cedano et al., 1997] Amino acid composition 141/406¼ 34.7% 88/265¼33.2%
SVM [Vapnik, 1998] Amino acid composition and amino acid pairs 80/406¼ 19.7% 124/265¼ 46.8%
Hybridization of ensemble classifiers

GO(Eq. 5) and Pse(Eq. 10)
Hybridization of GO (Eq. 1) and amphiphilic

PseAA (Eq. 3a)
290/406¼ 71.4% 209/265¼ 78.9%

aJackknife cross-validation testwas performed for the 406proteins in theOnlineSupplementaryMaterial A,where none of the proteins
has �25% sequence identity to any other in the same subcellular location.
bPrediction was performed for the 265 independent proteins in the Online Supplementary Materials B; none of proteins in the Online
Supplementary Materials A and B has �25% sequence identity to any others in the same subcellular location.
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subcellular location, the success rates would of
course decrease dramatically. (2) Most of the
success rates reported by the previous investi-
gators were derived from the benchmark data-
sets covering only 3–5 subcellular locations;
when prediction was made on the current
benchmark dataset that covers 11 subcellular
locations, the odds in getting a correct predic-
tion would of course become lower. (3) Most of
the previously reported success rates were
obtained by the sub-sampling cross-validation.
When tested by the jackknife cross-validation,
the corresponding rates would be further
diminished because, as mentioned above, the
jackknife cross-validation is much more strin-
gent for conducting an objective test and
tougher for getting a high success rate.
Since TargetP [Emanuelsson et al., 2000] is a

predictor with a built-in training dataset cover-
ing only three subcellular location sites, to
compare it with the current predictor Plant-
PLoc, let us randomly pick 30 protein samples
from Swiss-Prot databank according to the
following criteria: (1) they must belong to plant
proteins, as annotated with ‘‘viridiplantae’’ in
the OC field; (2) they must neither occur in the

training dataset of TargetP nor occur in the
training dataset of Plant-PLoc in order for
avoiding the unfair memory effect; (3) their
experimentally observed subcellular locations
are known as clearly annotated in the CC field,
and also these locations must be within the
scope covered by TargetP as a compromise for
rationally using TargetP. The predicted results
for the 30 plant proteins by TargetP and Plant-
PLoc are given in Table V, from which we can
see how the results miss-predicted by TargetP
were successfully corrected by Plant-PLoc.

CONCLUSION

Prediction of plant protein subcellular loca-
tion is an important problem but meanwhile a
very difficult one. The more the number of
subcellular locations is considered, or the more
stringent condition is imposed to exclude the
sequence redundancy and homology bias, the
more difficult will be to get a higher success
prediction rate. That is why for the benchmark
dataset investigated here, which involves 11
subcellular locations and in which none of
protein has �25% sequence identity to any

TABLE V. Examples to Show How the Results Miss-Predicted by TargetP Were Corrected
by Plant-PLoc

Protein (accession number)

Subcellular localization

Annotation in Swiss-Prot Predicted by TargetP Predicted by Plant-PLoc

P12853 Chloroplast Mitochondrion Chloroplast
P14226 Chloroplast Mitochondrion Chloroplast
Q9SBN6 Chloroplast Mitochondrion Chloroplast
Q41643 Chloroplast Mitochondrion Chloroplast
P28260 Chloroplast Any other location Chloroplast
P48706 Chloroplast Any other location Chloroplast
P27065 Chloroplast Any other location Chloroplast
P25832 Chloroplast Any other location Chloroplast
Q6EW14 Chloroplast Mitochondrion Chloroplast
Q3BAJ9 Chloroplast Mitochondrion Chloroplast
O98456 Chloroplast Mitochondrion Chloroplast
P06510 Chloroplast Mitochondrion Chloroplast
Q42690 Chloroplast Secretory pathway Chloroplast
Q85FH6 Chloroplast Secretory pathway Chloroplast
P12127 Chloroplast Secretory pathway Chloroplast
P29685 Mitochondrion Chloroplast Mitochondrion
P17614 Mitochondrion Chloroplast Mitochondrion
Q9FT52 Mitochondrion Any other location Mitochondrion
P29380 Mitochondrion Any other location Mitochondrion
P62773 Mitochondrion Any other location Mitochondrion
P00075 Mitochondrion Chloroplast Mitochondrion
Q8LFT2 Mitochondrion Chloroplast Mitochondrion
Q9ZT91 Mitochondrion Chloroplast Mitochondrion
P52901 Mitochondrion Chloroplast Mitochondrion
P26871 Mitochondrion Chloroplast Mitochondrion
Q36665 Mitochondrion Chloroplast Mitochondrion
P46742 Mitochondrion Secretory pathway Mitochondrion
Q95747 Mitochondrion Secretory pathway Mitochondrion
P60099 Mitochondrion Any other location Mitochondrion
P42056 Mitochondrion Any other location Mitochondrion
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others in a same subcellular location, the
success rates obtained by various powerful
existing methods were only within the range of
20–46%, which are 32–51% lower than the
rates obtained by Plant-PLoc, a new predictor
developed in this paper.

The overwhelmingly high success rates
obtained by Plant-PLoc indicate that proteins, if
represented through the GO discrete model, can
be more distinctly clustered according to their
different subcellular locations, and that the
ensemble classifier presented here is indeed a
powerful operationengine indistinguishing these
clusters.

Since many plant proteins in Swiss-Prot and
GO databases have no annotations to indicate
their subcellular locations, a downloadable file
listing the predicted results by Plant-PLoc for
all these proteins has been provided at http://
202.120.37.186/bioinf/plant. The file will be
updated twice a year to support the new entries
of plant proteins and reflect the continuous
development of Plant-PLoc.
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